

Home Search Collections Journals About Contact us My IOPscience

Space-like submanifolds in de Sitter spaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 5463

(http://iopscience.iop.org/0305-4470/34/26/313)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.97 The article was downloaded on 02/06/2010 at 09:08

Please note that terms and conditions apply.

J. Phys. A: Math. Gen. 34 (2001) 5463-5468

PII: S0305-4470(01)23211-9

Space-like submanifolds in de Sitter spaces

Ximin Liu

Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, People's Republic of China

E-mail: xmliu@dlut.edu.cn

Received 16 March 2001 Published 22 June 2001 Online at stacks.iop.org/JPhysA/34/5463

Abstract

Let M^n be a space-like submanifold in a de Sitter space $M_p^{n+p}(c)$ with flat normal bundle. This paper gives some intrinsic conditions for M^n to be totally umbilical.

PACS numbers: 0240, 0230T

Mathematics Subject Classification: 53C40, 53C42, 53C50

1. Introduction

Let $M_p^{n+p}(c)$ be an (n + p)-dimensional connected semi-Riemannian manifold of constant curvature c whose index is p. It is called an indefinite space form of index p and simply a space form when p = 0. If c > 0, we call it a de Sitter space of index p. Akutagawa [2] and Ramanathan [11] investigated space-like hypersurfaces in a de Sitter space and proved independently that a complete space-like hypersurface in a de Sitter space with constant mean curvature is totally umbilical if the mean curvature H satisfies $H^2 \leq c$ when n = 2 and $n^2H^2 < 4(n-1)c$ when $n \geq 3$. Later, Cheng [4] generalized this result to general submanifolds in a de Sitter space.

To our knowledge, there were almost no intrinsic rigidity results for the space-like submanifolds with constant scalar curvature in a de Sitter space until Zheng [12] obtained the following result (see also [13] for a weak version of this result): let M^n be an *n*-dimensional compact space-like hypersurface in $M_1^{n+1}(c)$ with constant scalar curvature. If M^n satisfies $K(M) \ge 0$, R < c, where R is the normalized scalar curvature of M^n , then M^n is totally umbilical.

In [6], Cheng and Yau firstly studied the rigidity problem for a hypersurface with constant scalar curvature in a space form by introducing a self-adjoint second-order differential operator \Box . They proved that, for an M^n in a space form $M^{n+1}(c)$, if *R* is constant and $R \ge c$, then $|\nabla h|^2 \ge n^2 |\nabla H|^2$ where *h* and *H* denote the second fundamental form and the length of the mean curvature vector field of M^n respectively. By using Cheng and Yau's technique, Cheng

and Ishikawa [5] have recently shown that the totally umbilical round spheres are the only compact space-like hypersurfaces in $S_1^{n+1}(1)$ with constant scalar curvature S < n(n-1). Some other authors, such as Liu [9] and Li [8], have also obtained interesting results related to the characterization of the totally umbilical round spheres as the only compact space-like hypersurfaces in the de Sitter space with constant scalar curvature.

In this paper, we extend Cheng and Yau's technique to higher codimensional cases and use their operator \Box to study the rigidity problem for space-like submanifolds in a de Sitter space with flat normal bundle.

2. Preliminaries

Let $M_p^{n+p}(c)$ be an (n + p)-dimensional semi-Riemannian manifold of constant curvature c whose index is p. Let M^n be an n-dimensional Riemannian manifold immersed in $M_p^{n+p}(c)$. As the semi-Riemannian metric of $M_p^{n+p}(c)$ induces the Riemannian metric of M^n , M^n is called a space-like submanifold. We choose a local field of semi-Riemannian orthonormal frames e_1, \ldots, e_{n+p} in $M_p^{n+p}(c)$ such that at each point of M^n , e_1, \ldots, e_n span the tangent space of M^n and form an orthonormal frame there. We use the following convention on the range of indices:

$$1 \leq A, B, C, \ldots \leq n+p$$
 $1 \leq i, j, k, \ldots \leq n$ $n+1 \leq \alpha, \beta, \gamma \leq n+p$

Let $\omega_1, \ldots, \omega_{n+p}$ be its dual frame field so that the semi-Riemannian metric of $M_p^{n+p}(c)$ is given by $d\bar{s}^2 = \sum_i \omega_i^2 - \sum_{\alpha} \omega_{\alpha}^2 = \sum_A \epsilon_A \omega_A^2$, where $\epsilon_i = 1$ and $\epsilon_{\alpha} = -1$. Then the structure equations of $M_p^{n+p}(c)$ are given by

$$d\omega_A = \sum_B \epsilon_B \omega_{AB} \wedge \omega_B \qquad \omega_{AB} + \omega_{BA} = 0 \tag{1}$$

$$d\omega_{AB} = \sum_{C} \epsilon_{C} \omega_{AC} \wedge \omega_{CB} - \frac{1}{2} \sum_{C,D} K_{ABCD} \omega_{C} \wedge \omega_{D}$$
(2)

$$K_{ABCD} = c \,\epsilon_A \epsilon_B (\delta_{AC} \delta_{BD} - \delta_{AD} \delta_{BC}). \tag{3}$$

Restricting these forms to M^n , we have

$$\omega_{\alpha} = 0 \qquad n+1 \leqslant \alpha \leqslant n+p. \tag{4}$$

The Riemannian metric of M^n is written as $ds^2 = \sum_i \omega_i^2$. From Cartan's lemma we can write

$$\omega_{\alpha i} = \sum_{j} h_{ij}^{\alpha} \omega_{j} \qquad h_{ij}^{\alpha} = h_{ji}^{\alpha}.$$
(5)

From these formulae, we obtain the structure equations of M^n :

$$d\omega_i = \sum_j \omega_{ij} \wedge \omega_j \qquad \omega_{ij} + \omega_{ji} = 0 \tag{6}$$

$$d\omega_{ij} = \sum_{k} \omega_{ik} \wedge \omega_{kj} - \frac{1}{2} \sum_{k,l} K_{ijkl} \omega_k \wedge \omega_l$$
(7)

$$R_{ijkl} = c(\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}) - \sum_{\alpha} (h^{\alpha}_{ik}h^{\alpha}_{jl} - h^{\alpha}_{il}h^{\alpha}_{jk})$$
(8)

where R_{ijkl} are the components of the curvature tensor of M^n .

For details on indefinite Riemannian manifolds see O'Neill [10]. We call

$$h = \sum_{\alpha} h_{\alpha} e_{\alpha} = \sum_{i,j,\alpha} h_{ij}^{\alpha} \omega_i \otimes \omega_j \otimes e_{\alpha}$$
⁽⁹⁾

the second fundamental form of M^n and the square length of the second fundamental form is defined by

$$S = \sum_{\alpha} \operatorname{tr}(h_{\alpha})^{2} = \sum_{\alpha,i,j} (h_{ij}^{\alpha})^{2} = |h|^{2}.$$
 (10)

The mean curvature vector ξ of M^n is defined by

$$\xi = \frac{1}{n} \sum_{\alpha} \operatorname{tr}(h_{\alpha}) e_{\alpha} = \frac{1}{n} \sum_{\alpha} \left(\sum_{i} h_{ii}^{\alpha} \right) e_{\alpha}$$
(11)

and we know that ξ is independent of the choice of unit normal vectors e_{n+1}, \ldots, e_{n+p} to M^n . The length of the mean curvature vector is called the mean curvature of M^n , denoted by H. From now on we assume that $\xi \neq 0$ and we choose the first unit normal vector e_{n+1} to M^n in the direction ξ . Therefore, we have

$$H = \frac{1}{n} \operatorname{tr} h_{n+1} = \frac{1}{n} \sum_{i} h_{ii}^{n+1} > 0$$
(12)

tr
$$h_{\alpha} = \sum_{i} h_{ii}^{\alpha} = 0$$
 $\alpha = n + 2, ..., n + p.$ (13)

If there exist p functions ρ_{α} such that $h_{ij}^{\alpha} = \rho_{\alpha} \delta_{ij}$ at each point of M^n , we call M^n a totally umbilical submanifold. For a totally umbilical submanifold, we have

$$\rho_{\alpha} = \frac{1}{n} \operatorname{tr} h_{\alpha} = \frac{1}{n} \sum_{i} h_{ii}^{\alpha}.$$
(14)

Let h_{ijk}^{α} and h_{ijkl}^{α} denote the covariant derivative and the second covariant derivative of h_{ij}^{α} , respectively. Then we have $h_{ijk}^{\alpha} = h_{ikj}^{\alpha}$ which implies

$$h_{ijkm}^{\alpha} = h_{ikjm}^{\alpha} \tag{15}$$

$$h_{ijkl}^{\alpha} - h_{ijlk}^{\alpha} = \sum_{m} h_{im}^{\alpha} R_{mjkl} + \sum_{m} h_{jm}^{\alpha} R_{mikl} + \sum_{\beta} h_{ij}^{\beta} R_{\alpha\beta kl}$$
(16)

where $R_{\alpha\beta kl}$ are the components of the normal curvature tensor of M^n , that is

$$R_{\alpha\beta kl} = \sum_{i} (h_{ik}^{\alpha} h_{il}^{\beta} - h_{il}^{\alpha} h_{ik}^{\beta}).$$
⁽¹⁷⁾

If $R_{\alpha\beta kl} = 0$ at point x of M^n we say that the normal connection of M^n is flat at x and it is well known [3] that $R_{\alpha\beta kl} = 0$ at x if and only if h_{α} are simultaneously diagonalizable at x.

3. Space-like submanifolds with flat normal bundle

Cheng and Yau [6] gave a lower estimation for $|\nabla h|^2$, the square of the length of the covariant derivative of *h*, which plays an important role in their discussion. They proved that, for a hypersurface in a space form of constant scalar curvature *c*, if the normalized scalar curvature *R* is constant and $R \ge c$, then $|\nabla h|^2 \ge n^2 |\nabla H|^2$.

For the space-like submanifolds in a de Sitter space, we can prove the following theorem.

Theorem 3.1. Let M^n be a compact space-like submanifold in $M_p^{n+p}(c)$ with nowhere zero mean curvature H. If R is constant and R < c, then

$$|\nabla h|^2 = \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2 \ge n^2 |\nabla H|^2.$$
⁽¹⁸⁾

Moreover, if the equality in (18) holds on M^n , then H is constant.

Proof. From (8), we have $n^2 H^2 - |h|^2 = n(n-1)(c-R) > 0$. Taking the covariant derivative on both sides of this equality, we get

$$n^2 H H_k = \sum_{i,j,\alpha} h_{ij}^{\alpha} h_{ijk}^{\alpha} \qquad k = 1, \dots, n.$$

For every k, it follows from the Cauchy–Schwarz inequality that

$$n^{4}H^{2}H_{k}^{2} = \left(\sum_{i,j,\alpha} h_{ijk}^{\alpha} h_{ijk}^{\alpha}\right)^{2} \leqslant |h|^{2} \sum_{i,j,\alpha} (h_{ijk}^{\alpha})^{2}$$
(19)

where the equality holds if and only if there exits a real function c_k such that

$$h_{ijk}^{\alpha} = c_k \, h_{ij}^{\alpha} \tag{20}$$

for all *i*, *j* and α . Summing on both sides of (19) with respect to *k*, we have

$$n^{4}H^{2}|\nabla H|^{2} = n^{4}H^{2}\sum_{k}H_{k}^{2} \leqslant |h|^{2}\sum_{(i,j,k,\alpha)}(h_{ijk}^{\alpha})^{2} \leqslant n^{2}H^{2}\sum_{(i,j,k,\alpha)}(h_{ijk}^{\alpha})^{2}.$$
(21)

Therefore (18) holds on M^n .

Suppose that $|\nabla h|^2 = n^2 |\nabla H|^2$ holds on M^n . It follows from (21) that

$$0 \leq n^{3}(n-1)(c-R)|\nabla H|^{2} \leq |h|^{2} \left(\sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^{2} - n^{2}|\nabla H|^{2}\right).$$
(22)

Hence $(c - R)|\nabla H|^2 = 0$ on M^n . Because R < c, $|\nabla H|^2 = 0$ on M^n , hence H is constant on M^n . This completes the proof of theorem 3.1.

In the following, we propose to use Cheng and Yau's operator \Box to study the rigidity problem for compact space-like submanifolds in the de Sitter space $M_p^{n+p}(c)$.

We know that the Laplacian Δh_{ij}^{α} of the fundamental form h_{ij}^{α} is defined to be $\sum_{k} h_{ijkk}^{\alpha}$, and hence, using (15), (16) and the assumption that M^{n} has flat normal bundle, we have

$$\Delta h_{ij}^{\alpha} = \sum_{k} (h_{ijkk}^{\alpha} - h_{ikjk}^{\alpha}) + \sum_{k} (h_{ikjk}^{\alpha} - h_{ikkj}^{\alpha}) + \sum_{k} (h_{ikkj}^{\alpha} - h_{kkij}^{\alpha}) + (\text{tr } h_{\alpha})_{ij}$$
$$= \sum_{m,k} h_{im}^{\alpha} R_{mkjk} + \sum_{m,k} h_{mk}^{\alpha} R_{mijk} + (\text{tr } h_{\alpha})_{ij}$$
(23)

where $(\text{tr } h_{\alpha})_{ij}$ denotes the second covariant derivative of $(\text{tr } h_{\alpha})$. Since the normal bundle of M^n is flat, we choose e_1, \ldots, e_n such that

$$h_{ij}^{\alpha} = \lambda_i^{\alpha} \delta_{ij} \qquad \alpha = n+1, \dots, n+p.$$
⁽²⁴⁾

Then the Laplacian of $|h|^2 = \sum_{i,j,\alpha} (h_{ij}^{\alpha})^2$ is given by

$$\frac{1}{2}\Delta|h|^{2} = \frac{1}{2}n^{2}\Delta H^{2} = |\nabla h|^{2} + \sum_{i,j,\alpha} h_{ij}^{\alpha} \Delta h_{ij}^{\alpha}$$
$$= |\nabla h|^{2} + n \sum_{i} \lambda_{i}^{n+1} H_{ii} + \frac{1}{2} \sum_{i,j,\alpha} R_{ijij} (\lambda_{i}^{\alpha} - \lambda_{j}^{\alpha})^{2}.$$
(25)

We define an operator \Box acting on f by

$$\Box f = \sum_{i,j} (nH\delta_{ij} - h_{ij}^{n+1}) f_{ij}.$$
 (26)

Since $(nH\delta_{ij} - h_{ij}^{n+1})$ is trace-free it follows from [6] that the operator \Box is self-adjoint relative to the L^2 -inner product of M^n , i.e.

$$\int_{M^n} f \cdot \Box g = \int_{M^n} g \cdot \Box f.$$
⁽²⁷⁾

Thus we have

$$\Box H = \sum_{i,j} (nH\delta_{ij} - h_{ij}^{n+1}) H_{ij} = nH \sum_{i} H_{ii} - \sum_{i} \lambda_{i}^{n+1} H_{ii}$$
$$= \frac{1}{2} n(\Delta H^{2} - 2|\nabla H|^{2}) - \sum_{i} \lambda_{i}^{n+1} H_{ii}.$$
(28)

Hence we can prove the following theorem.

Theorem 3.2. Let M^n be a compact space-like submanifold with non-negative sectional curvature in $M_p^{n+p}(c)$. Suppose that the normal bundle N(M) is flat and the normalized mean curvature vector is parallel. If R is constant and R < c, then M^n is totally umbilical.

Proof. From (25) and (28), we have

$$n \Box H = |\nabla h|^2 - n^2 |\nabla H|^2 + \frac{1}{2} \sum_{i,j,\alpha} R_{ijij} (\lambda_i^{\alpha} - \lambda_j^{\alpha})^2.$$
(29)

Since \Box is self-adjoint, we conclude that

$$0 \ge \int_{M^n} \left\{ (|\nabla h|^2 - n^2 |\nabla H|^2) + \frac{1}{2} \sum_{i,j,\alpha} R_{ijij} (\lambda_i^{\alpha} - \lambda_j^{\alpha})^2 \right\}.$$
(30)

Thus, by hypothesis and theorem 3.1, we have $|\nabla h|^2 = n^2 |\nabla H|^2$, and *H* is constant on M^n , then ξ is parallel. Hence, our theorem follows immediately from a result of Aiyama [1, theorem 3] and this completes the proof of the theorem 3.2.

Remark 3.1. It should be pointed out that the assumption that the normalized mean curvature vector field ξ/H of M^n is parallel is different from assumption that the mean curvature vector field ξ of M^n is parallel. It is significant to consider the difference. Li [7] has proven that, if M^n is a closed and oriented pseudo-umbilical submanifold in a space form and H is nowhere zero, them H is constant if and only if ξ/H is parallel.

Theorem 3.3. Let M^n be a compact space-like submanifold with non-negative sectional curvature in $M_p^{n+p}(c)$. Suppose that M^n has flat normal bundle, if the normalized scalar curvature R of M^n is proportional to the mean curvature H of M^n , that is R = aH, where a is any constant. Then M^n is totally umbilical.

Proof. From (8) and the hypothesis, we have

$$h|^{2} = n^{2}H^{2} - n(n-1)(c-aH).$$
(31)

Taking the covariant derivative of (31), we have for each k

$$(2n^2H + n(n-1)a)H_k = \sum_{i,j,\alpha} h_{ij}^{\alpha} h_{ijk}^{\alpha}$$

and hence, by the Cauchy-Schwarz inequality, we have

$$(2n^2H + n(n-1)a)^2 |\nabla H|^2 \leq 4 \sum_{i,j,\alpha} (h_{ij}^{\alpha})^2 \sum_{i,j,k,\alpha} (h_{ijk}^{\alpha})^2$$

that is

$$(2n^{2}H + n(n-1)a)^{2}|\nabla H|^{2} \leq 4|h|^{2}|\nabla h|^{2}.$$
(32)

From (31) and (32), we have

$$|\nabla h|^{2} - n^{2} |\nabla H|^{2} \ge |h|^{-2} \left[\frac{(2n^{2}H + n(n-1)a)^{2}}{4} - n^{2} |h|^{2} \right] |\nabla H|^{2}$$
$$= |h|^{-2} n^{2} (n-1) \left(\frac{(n-1)a^{2}}{4} + nc \right) |\nabla H|^{2}.$$
(33)

So from (30) and (33), we have

$$0 \ge \int_{M^n} \left\{ |h|^{-2} n^2 (n-1) \left(\frac{(n-1)a^2}{4} + nc \right) |\nabla H|^2 + \frac{1}{2} \sum_{i,j,\alpha} R_{ijij} (\lambda_i^{\alpha} - \lambda_j^{\alpha})^2 \right\}.$$
 (34)

Thus, by hypothesis, $|\nabla H|^2 = 0$, so *H* is constant on M^n , hence ξ is parallel, as from theorem 3 of [1] we know that M^n is totally umbilical.

Remark 3.2. In theorems 3.2 and 3.3, we have used assumptions that are different from that in [1, theorem 3] to obtain the same result.

Acknowledgments

This paper was written during the author's stay at the Max-Planck-Institut für Mathematik in Bonn. The author would like to express his thanks to Professor Yuri Manin for the invitation and very warm hospitality.

References

- [1] Aiyama R 1995 Compact space-like submanifolds in a pseudo-Riemannian sphere $S_p^{m+p}(c)$ Tokyo J. Math. 18 81–90
- [2] Akutagawa K 1987 On space-like hypersurfaces with constant mean curvature in the de Sitter space Math. Z. 196 13–9
- [3] Chen B Y 1973 Geometry of Submanifolds (New York: Marcel Dekker)
- [4] Cheng Q M 1991 Complete space-like submanifolds in a de Sitter space with parallel mean curvature vector Math. Z. 206 333–9
- [5] Cheng Q M and Ishikawa S 1998 Space-like hypersurfaces with constant scalar curvature Manuscri. Math. 95 499–505
- [6] Cheng S Y and Yau S T 1977 Hypersurfaces with constant scalar curvature Math. Ann. 225 195-204
- [7] Li H 1988 A global theorem about pseudo-umbilical submanifolds J. Math. (Wuhan) 8 161-6 (in Chinese)
- [8] Li H 1997 Global rigidity theorems of hypersurfaces Ark. Mat. 35 327-51
- [9] Liu X 2000 Space-like hypersurfaces of constant scalar curvature in the de Sitter space Atti Semin. Mat. Fis. Univ. Modela 48 99–106
- [10] O'Neill B 1983 Semi-Riemannian Geometry with Applications to Relativity (New York: Academic)
- [11] Ramanathan J 1987 Complete space-like hypersurfaces of constant mean curvature in the de Sitter space Indiana Univ. Math. J. 36 349–59
- [12] Zheng Y 1995 On space-like hypersurfaces in the de Sitter spaces Ann. Global Anal. Goem. 13 317-21
- [13] Zheng Y 1996 Space-like hypersurfaces with constant scalar curvature in the de Sitter spaces Differ. Goem. Appl. 6 51–4