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Abstract
Let Mn be a space-like submanifold in a de Sitter space M

n+p
p (c) with flat

normal bundle. This paper gives some intrinsic conditions for Mn to be totally
umbilical.
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1. Introduction

Let M
n+p
p (c) be an (n + p)-dimensional connected semi-Riemannian manifold of constant

curvature c whose index is p. It is called an indefinite space form of index p and simply a
space form when p = 0. If c > 0, we call it a de Sitter space of index p. Akutagawa [2]
and Ramanathan [11] investigated space-like hypersurfaces in a de Sitter space and proved
independently that a complete space-like hypersurface in a de Sitter space with constant mean
curvature is totally umbilical if the mean curvature H satisfies H 2 � c when n = 2 and
n2H 2 < 4(n−1)cwhenn � 3. Later, Cheng [4] generalized this result to general submanifolds
in a de Sitter space.

To our knowledge, there were almost no intrinsic rigidity results for the space-like
submanifolds with constant scalar curvature in a de Sitter space until Zheng [12] obtained the
following result (see also [13] for a weak version of this result): let Mn be an n-dimensional
compact space-like hypersurface in Mn+1

1 (c) with constant scalar curvature. If Mn satisfies
K(M) � 0, R < c, where R is the normalized scalar curvature of Mn, then Mn is totally
umbilical.

In [6], Cheng and Yau firstly studied the rigidity problem for a hypersurface with constant
scalar curvature in a space form by introducing a self-adjoint second-order differential operator
�. They proved that, for an Mn in a space form Mn+1(c), if R is constant and R � c, then
|∇h|2 � n2|∇H |2 where h and H denote the second fundamental form and the length of the
mean curvature vector field of Mn respectively. By using Cheng and Yau’s technique, Cheng
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and Ishikawa [5] have recently shown that the totally umbilical round spheres are the only
compact space-like hypersurfaces in Sn+1

1 (1) with constant scalar curvature S < n(n − 1).
Some other authors, such as Liu [9] and Li [8], have also obtained interesting results related
to the characterization of the totally umbilical round spheres as the only compact space-like
hypersurfaces in the de Sitter space with constant scalar curvature.

In this paper, we extend Cheng and Yau’s technique to higher codimensional cases and
use their operator � to study the rigidity problem for space-like submanifolds in a de Sitter
space with flat normal bundle.

2. Preliminaries

Let M
n+p
p (c) be an (n + p)-dimensional semi-Riemannian manifold of constant curvature c

whose index is p. Let Mn be an n-dimensional Riemannian manifold immersed in M
n+p
p (c).

As the semi-Riemannian metric of M
n+p
p (c) induces the Riemannian metric of Mn, Mn is

called a space-like submanifold. We choose a local field of semi-Riemannian orthonormal
frames e1, . . . , en+p in M

n+p
p (c) such that at each point of Mn, e1, . . . , en span the tangent

space of Mn and form an orthonormal frame there. We use the following convention on the
range of indices:

1 � A,B,C, . . . � n + p 1 � i, j, k, . . . � n n + 1 � α, β, γ � n + p.

Let ω1, . . . , ωn+p be its dual frame field so that the semi-Riemannian metric of M
n+p
p (c) is

given by ds̄2 = ∑
i ω

2
i −∑

α ω2
α = ∑

A εAω
2
A, where εi = 1 and εα = −1. Then the structure

equations of Mn+p
p (c) are given by

dωA =
∑
B

εBωAB ∧ ωB ωAB + ωBA = 0 (1)

dωAB =
∑
C

εCωAC ∧ ωCB − 1
2

∑
C,D

KABCDωC ∧ ωD (2)

KABCD = c εAεB(δACδBD − δADδBC). (3)

Restricting these forms to Mn, we have

ωα = 0 n + 1 � α � n + p. (4)

The Riemannian metric of Mn is written as ds2 = ∑
i ω

2
i . From Cartan’s lemma we can write

ωαi =
∑
j

hα
ijωj hα

ij = hα
ji . (5)

From these formulae, we obtain the structure equations of Mn:

dωi =
∑
j

ωij ∧ ωj ωij + ωji = 0 (6)

dωij =
∑
k

ωik ∧ ωkj − 1
2

∑
k,l

Kijklωk ∧ ωl (7)

Rijkl = c(δikδjl − δilδjk) −
∑
α

(hα
ikh

α
jl − hα

ilh
α
jk) (8)

where Rijkl are the components of the curvature tensor of Mn.
For details on indefinite Riemannian manifolds see O’Neill [10]. We call

h =
∑
α

hαeα =
∑
i,j,α

hα
ijωi ⊗ ωj ⊗ eα (9)
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the second fundamental form of Mn and the square length of the second fundamental form is
defined by

S =
∑
α

tr(hα)
2 =

∑
α,i,j

(hα
ij )

2 = |h|2. (10)

The mean curvature vector ξ of Mn is defined by

ξ = 1

n

∑
α

tr(hα)eα = 1

n

∑
α

(∑
i

hα
ii

)
eα (11)

and we know that ξ is independent of the choice of unit normal vectors en+1, . . . , en+p to Mn.
The length of the mean curvature vector is called the mean curvature of Mn, denoted by H .
From now on we assume that ξ �= 0 and we choose the first unit normal vector en+1 to Mn in
the direction ξ . Therefore, we have

H = 1

n
tr hn+1 = 1

n

∑
i

hn+1
ii > 0 (12)

tr hα =
∑
i

hα
ii = 0 α = n + 2, . . . , n + p. (13)

If there exist p functions ρα such that hα
ij = ραδij at each point of Mn, we call Mn a

totally umbilical submanifold. For a totally umbilical submanifold, we have

ρα = 1

n
tr hα = 1

n

∑
i

hα
ii . (14)

Let hα
ijk and hα

ijkl denote the covariant derivative and the second covariant derivative of
hα
ij , respectively. Then we have hα

ijk = hα
ikj which implies

hα
ijkm = hα

ikjm (15)

hα
ijkl − hα

ijlk =
∑
m

hα
imRmjkl +

∑
m

hα
jmRmikl +

∑
β

h
β

ijRαβkl (16)

where Rαβkl are the components of the normal curvature tensor of Mn, that is

Rαβkl =
∑
i

(hα
ikh

β

il − hα
ilh

β

ik). (17)

If Rαβkl = 0 at point x of Mn we say that the normal connection of Mn is flat at x and it is
well known [3] that Rαβkl = 0 at x if and only if hα are simultaneously diagonalizable at x.

3. Space-like submanifolds with flat normal bundle

Cheng and Yau [6] gave a lower estimation for |∇h|2, the square of the length of the covariant
derivative of h, which plays an important role in their discussion. They proved that, for a
hypersurface in a space form of constant scalar curvature c, if the normalized scalar curvature
R is constant and R � c, then |∇h|2 � n2|∇H |2.

For the space-like submanifolds in a de Sitter space, we can prove the following theorem.

Theorem 3.1. Let Mn be a compact space-like submanifold in M
n+p
p (c) with nowhere zero

mean curvature H . If R is constant and R < c, then

|∇h|2 =
∑

i,j,k,α

(hα
ijk)

2 � n2|∇H |2. (18)

Moreover, if the equality in (18) holds on Mn, then H is constant.
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Proof. From (8), we have n2H 2 − |h|2 = n(n − 1)(c − R) > 0. Taking the covariant
derivative on both sides of this equality, we get

n2H Hk =
∑
i,j,α

hα
ij h

α
ijk k = 1, . . . , n.

For every k, it follows from the Cauchy–Schwarz inequality that

n4H 2H 2
k =

(∑
i,j,α

hα
ij h

α
ijk

)2

� |h|2
∑
i,j,α

(hα
ijk)

2 (19)

where the equality holds if and only if there exits a real function ck such that

hα
ijk = ck h

α
ij (20)

for all i, j and α. Summing on both sides of (19) with respect to k, we have

n4H 2|∇H |2 = n4H 2
∑
k

H 2
k � |h|2

∑
(i,j,k,α)

(hα
ijk)

2 � n2H 2
∑

(i,j,k,α)

(hα
ijk)

2. (21)

Therefore (18) holds on Mn.
Suppose that |∇h|2 = n2|∇H |2 holds on Mn. It follows from (21) that

0 � n3(n − 1)(c − R)|∇H |2 � |h|2
(∑

i,j,k,α

(hα
ijk)

2 − n2|∇H |2
)

. (22)

Hence (c − R)|∇H |2 = 0 on Mn. Because R < c, |∇H |2 = 0 on Mn, hence H is constant
on Mn. This completes the proof of theorem 3.1. �

In the following, we propose to use Cheng and Yau’s operator � to study the rigidity
problem for compact space-like submanifolds in the de Sitter space M

n+p
p (c).

We know that the Laplacian $hα
ij of the fundamental form hα

ij is defined to be
∑

k h
α
ijkk ,

and hence, using (15), (16) and the assumption that Mn has flat normal bundle, we have

$hα
ij =

∑
k

(hα
ijkk − hα

ikjk) +
∑
k

(hα
ikjk − hα

ikkj ) +
∑
k

(hα
ikkj − hα

kkij ) + (tr hα)ij

=
∑
m,k

hα
imRmkjk +

∑
m,k

hα
mkRmijk + (tr hα)ij (23)

where (tr hα)ij denotes the second covariant derivative of (tr hα). Since the normal bundle of
Mn is flat, we choose e1, . . . , en such that

hα
ij = λα

i δij α = n + 1, . . . , n + p. (24)

Then the Laplacian of |h|2 = ∑
i,j,α(h

α
ij )

2 is given by

1
2$|h|2 = 1

2n
2$H 2 = |∇h|2 +

∑
i,j,α

hα
ij$hα

ij

= |∇h|2 + n
∑
i

λn+1
i Hii + 1

2

∑
i,j,α

Rijij (λ
α
i − λα

j )
2. (25)

We define an operator � acting on f by

� f =
∑
i,j

(nHδij − hn+1
ij )fij . (26)

Since (nHδij −hn+1
ij ) is trace-free it follows from [6] that the operator � is self-adjoint relative

to the L2-inner product of Mn, i.e.∫
Mn

f · � g =
∫
Mn

g · � f. (27)



Space-like submanifolds in de Sitter spaces 5467

Thus we have

�H =
∑
i,j

(nHδij − hn+1
ij )Hij = nH

∑
i

Hii −
∑
i

λn+1
i Hii

= 1
2n($H 2 − 2|∇H |2) −

∑
i

λn+1
i Hii . (28)

Hence we can prove the following theorem.

Theorem 3.2. Let Mn be a compact space-like submanifold with non-negative sectional
curvature in M

n+p
p (c). Suppose that the normal bundle N (M) is flat and the normalized

mean curvature vector is parallel. If R is constant and R < c, then Mn is totally umbilical.

Proof. From (25) and (28), we have

n�H = |∇h|2 − n2|∇H |2 + 1
2

∑
i,j,α

Rijij (λ
α
i − λα

j )
2. (29)

Since � is self-adjoint, we conclude that

0 �
∫
Mn

{
(|∇h|2 − n2|∇H |2) + 1

2

∑
i,j,α

Rijij (λ
α
i − λα

j )
2

}
. (30)

Thus, by hypothesis and theorem 3.1, we have |∇h|2 = n2|∇H |2, andH is constant onMn, then
ξ is parallel. Hence, our theorem follows immediately from a result of Aiyama [1, theorem 3]
and this completes the proof of the theorem 3.2. �
Remark 3.1. It should be pointed out that the assumption that the normalized mean curvature
vector field ξ/H of Mn is parallel is different from assumption that the mean curvature vector
field ξ of Mn is parallel. It is significant to consider the difference. Li [7] has proven that, if
Mn is a closed and oriented pseudo-umbilical submanifold in a space form and H is nowhere
zero, them H is constant if and only if ξ/H is parallel.

Theorem 3.3. Let Mn be a compact space-like submanifold with non-negative sectional
curvature in M

n+p
p (c). Suppose that Mn has flat normal bundle, if the normalized scalar

curvature R of Mn is proportional to the mean curvature H of Mn, that is R = aH , where a

is any constant. Then Mn is totally umbilical.

Proof. From (8) and the hypothesis, we have

|h|2 = n2H 2 − n(n − 1)(c − aH). (31)

Taking the covariant derivative of (31), we have for each k

(2n2H + n(n − 1)a)Hk =
∑
i,j,α

hα
ijh

α
ijk

and hence, by the Cauchy–Schwarz inequality, we have

(2n2H + n(n − 1)a)2|∇H |2 � 4
∑
i,j,α

(hα
ij )

2
∑

i,j,k,α

(hα
ijk)

2

that is

(2n2H + n(n − 1)a)2|∇H |2 � 4|h|2|∇h|2. (32)

From (31) and (32), we have

|∇h|2 − n2|∇H |2 � |h|−2

[
(2n2H + n(n − 1)a)2

4
− n2|h|2

]
|∇H |2

= |h|−2n2(n − 1)

(
(n − 1)a2

4
+ nc

)
|∇H |2. (33)
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So from (30) and (33), we have

0 �
∫
Mn

{
|h|−2n2(n − 1)

(
(n − 1)a2

4
+ nc

)
|∇H |2 +

1

2

∑
i,j,α

Rijij (λ
α
i − λα

j )
2

}
. (34)

Thus, by hypothesis, |∇H |2 = 0, soH is constant onMn, hence ξ is parallel, as from theorem 3
of [1] we know that Mn is totally umbilical. �

Remark 3.2. In theorems 3.2 and 3.3, we have used assumptions that are different from that
in [1, theorem 3] to obtain the same result.
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